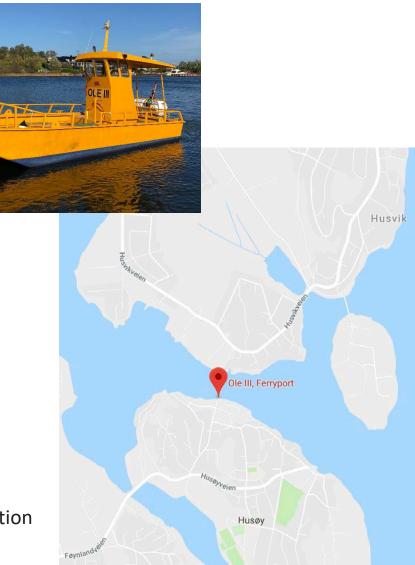


Development of video processing algorithm (YOLO) in autonomous vessels operations

Researcher:Behfar AtaeiSupervisors:Steven C. Mallam, Marius S. Tannum, Salman Nazir

Training and Assessment Research Group (TARG) Digital Design and Autonomy Research Group Department of Maritime Operations University of South-Eastern Norway


Motivation of Research

• Tønsberg Municipality

- Replacing Ole III with Autonomous Vessel

• Research Project

- Small Autonomous Ferry
- MARKOM 2020
- University of South-Eastern Norway (USN)
- Norwegian University of Science and Technology (NTNU) Ålesund
- Risk analysis focusing on assessment of leisure vessels operators behavior in accordance with COLREG standard
- Data Collected
 - Observational Reports
 - Video Recording
 - Global Positioning System (GPS) location, heading, throttle, and rudder position

Data Collection

- Two Sets of Video Data
 - Optical Camera
 - Thermal Camera

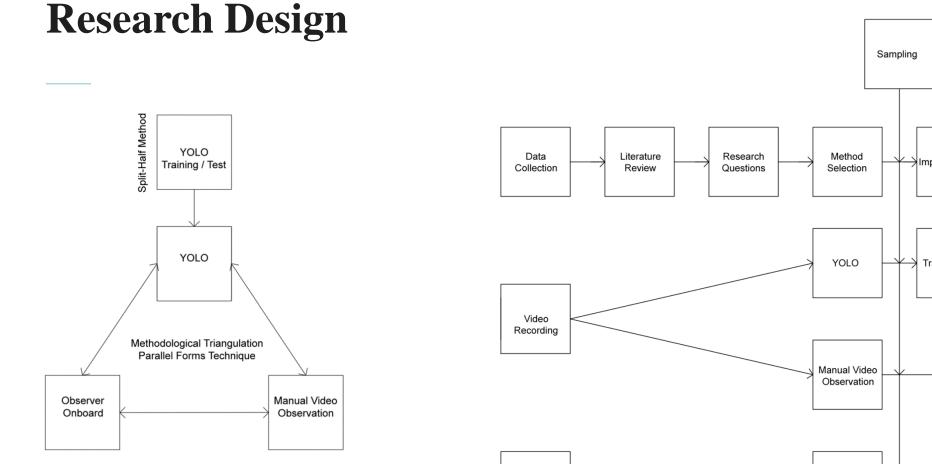
• Observation Data

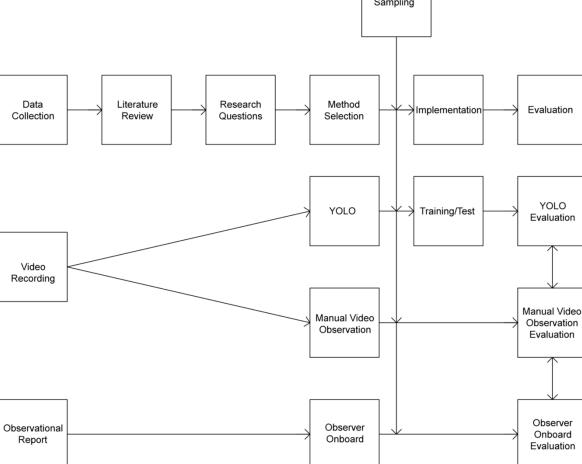
- Time and Date
- Passengers Data
- Violations of COLREG by passing traffic
- Captain Decision in case of COLREG violation
- Crossing Traffic Data in case of Intervening Navigation

Research Objectives

• Evaluate the potential of computer vision algorithms, in particular, YOLO for autonomous vessel applications such as collision avoidance.

Research Questions:


- Does the developed computer algorithm (YOLO) comply with the observation reports gathered by the crew during watchkeeping?
- To what extent is the machine learning algorithm (YOLO) accurate for application in autonomous vessels operations?



Literature

• Autonomous Vessels

- Recent Developments in Autonomous Area (Industry and Research)
 - Maritime Unmanned Navigation through Intelligent in Networks (MUNIN) (MUNIN, 2016)
 - Advanced Autonomous Waterborne Applications Initiatives (AAWA) (Rolls-Royce, 2016)
 - DNV-GL Revolt (DNV GL, 2019)
 - YARA-Birkeland (Kongsberg Maritime, 2019)
- Safety and Risk Models Thieme, Utne, and Haugen (2018), Wróbel, Montewka, and Kujala (2018)
- Lack of Empirical Data
- Machine Learning and Computer Vision
 - Computer Vision Algorithms (Goodfellow, 2017), (Finlay, 2017)
 - Limited research for Maritime Application Kim, Hong, Choi, and Kim (2018), Rodin et al. (2018), Yang-Lang et al. (2019)

Population and Sample

Data Type	Duration	Start Date	End Date	Total Data Points	
Observational Reports	2 Months	04 June 2018	04 August 2018	4803 Reports	
Video Recordings	Two Months and 21 Days	06 June 2018	27 August 2018	82 Days	

Purposive Sampling

- Criteria "Violating of COLREG by passing traffic distinguished by the observer onboard Ole III"

Data Type	Percentage	Number of Data Points (Crossings)		
Training	60%	101		
Test	20%	33		
Evaluation	20%	34		
Total	100%	168		

Population

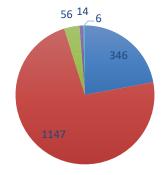
- Training and Test Input Preparation
 - 845 Images Captured on Training and Test Dataset
 - 442 Selected for Training and Test

Class Definitions

Class Number	Class Name	Description
0	Ole	Ole III
1	Motorboat	All the vessels with engines for propulsion including jet-skies
2	Sailboat	Sailboats sailing or using engines
3	Rowboat	Vessels with human energy as propulsion
4	Other	Utility, construction, and passenger vessels

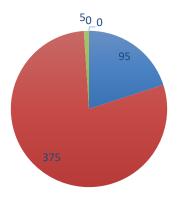
Training Inputs

• Input Preparation



0 0.348828 0.372917 0.053906 0.048611 1 0.695703 0.381944 0.066406 0.041667 1 0.767969 0.470139 0.103125 0.087500 1 0.706641 0.451389 0.121094 0.080556 1 0.560938 0.413194 0.042188 0.026389 2 0.489844 0.344444 0.059375 0.150000 3 0.592188 0.445139 0.060938 0.029167 4 0.807813 0.397222 0.132812 0.108333

• Object Distribution in Training and Test Inputs


	Number of	of Class Content (Number of Objects)					
Description	Images	Ole	Motorboat	Sailboat	Rowboat	Other	Total
Training Dataset	347	346	1147	56	14	6	1569
Test Dataset	95	95	375	5	0	0	475

Training Dataset Distribution

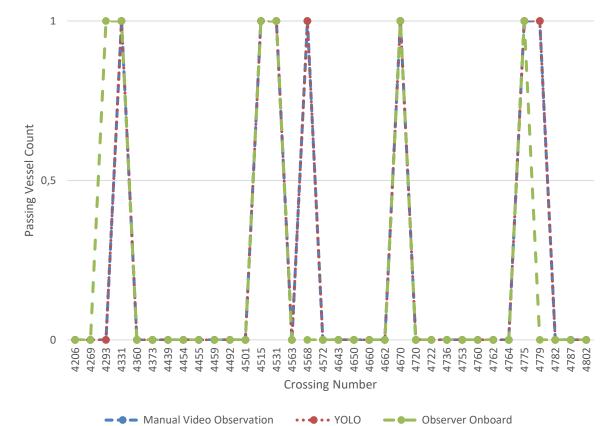
Ole Motorboat Sailboat Roboat Other

Test Dataset Distribution

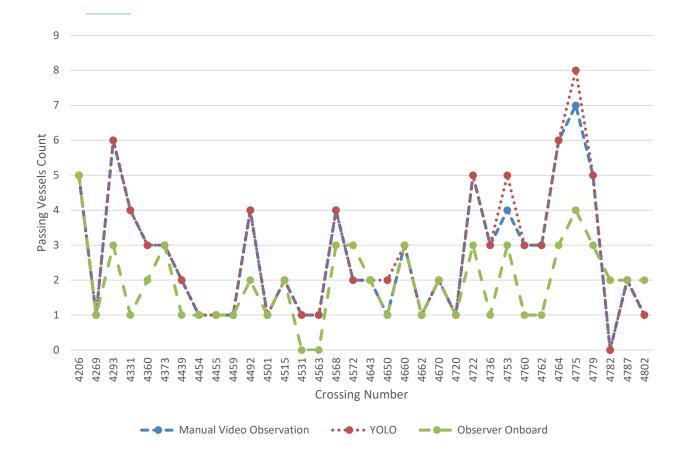
Ole Motorboat Sailboat Other

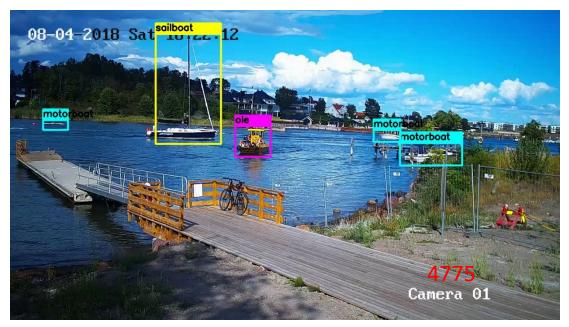
Results – Training of YOLO

- Elbow Point at Epoch 2000
- Training Accuracy 94%
- Detection Criteria for YOLO
- Misdetection and Misclassification Errors

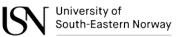

Results – Sample Video of YOLO v3 Detections - 4775

Results – Ole and Sailboat Classes

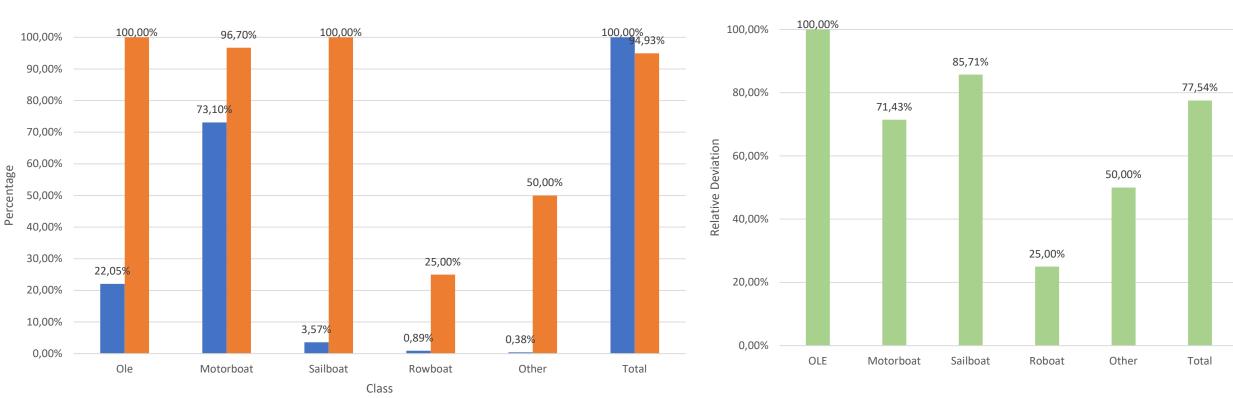

- Ole Class
 - Observer Onboard
 - Not Applicable
 - YOLO
 - 100% Accuracy
 - Manual Video Observation
 - Not Applicable


• Sailboat Class

Results – Motorboat Class



Results – Rowboat Class


Results – Other Class

Discussions

Training Percentage VS YOLO Accuracy

Observer Onboard Performance

Training Percentage
Accuracy

Discussions

- Validity and Reliability
 - YOLO Accuracy During Training/Test Phase : 94%
 - YOLO Accuracy in Evaluation Phase:
- Benchmarks:
 - PASCAL VOC, COCO
 - Rodin et al. (2018)
 - Yang-Lang et al. (2019)
- Misclassification and Misdetection Errors
- Traffic Situation

Jniversity of

- Application in Autonomous Operations
- Hardware Reliability

Not Applicable 92.5% 90.0%

95%

Limitations

- Secondary Data
- Generalization
- Observer Onboard Evaluations
 - Primary Objective: COLREG Violation and Captains Decision
 - Secondary Objective: Traffic Reporting in Case of Affecting the Navigation of Ole III
 - Different Detection Criteria with YOLO
 - Different Field of View in Comparison with Camera
- Camera Resolution and Video Speed (FPS)
- Computational Power

Conclusions

- Detection accuracy of YOLO was lower in the classes with lower percentage contribution in the training phase while classes with a higher number of objects in the training phase achieved higher accuracy.
- YOLO achieved 94% and 95% detection accuracies on training/test and evaluation phases.
- The accuracies are within the same range as benchmarks.
- Well-developed computer vision algorithm is a promising alternative for practical applications.
- Inconsistencies are seen between observational reports and video recordings.
- Further research is needed to evaluate the safety aspects of implementing this technology.

Recommendations for Future Research

- Increase the number of training inputs by analyzing more crossings.
- Implement the system on other settings.
- Different camera arrangements.
- Comparison with other computer vision systems in the same settings.
- More systematic observations with improved instructions.

Thank You For Your Attention Any Questions?

