

Preliminary hazard analysis of a small harbor passenger ferry

Results, challenges and further work

Christoph A. Thieme, Chuanqi Guo, Ingrid B. Utne, Stein Haugen

14.11.2019

Paper # 49

Unlocking the potential of autonomous systems and operations through supervisory risk control

- The ferry
- Hazard analysis
- Results
- Challenges and the way forward

The ferry (1)

- 12 Passengers
- On-demand
- One minute travel
- Shore base for monitoring
- Radio communication
- Operation expected 2020

(Eide 2018)

The ferry (2)

Systems and features:

- Autonomous navigation
- Autonomous docking
- Automatic passenger registration
- All electric power system
 - Charging while docking
- Maximum speed 5 knots

- The ferry
- Hazard analysis
- Results
- Challenges and the way forward

What are harzards and risk?

- Hazard:
 - "A hazard is a potential source of harm"
 - Ferry operation or interaction with the environment
 - Damage to people, environment, property
- Risk:
 - Consequences of an event combined with the associated probabilities
 - To what extend may the ferry's hazards lead to (negative) consequences

Why hazard analysis?

- Document assumptions
- Derive requirements
- Improve design
- Demonstrate compliance with regulations
- Convince the public

Our approach

Two workshops

- 1. Define the goal of the meeting
- Identify hazards and events from checklists
- 3. Estimate categorial frequency and consequences for the events
- 4. Evaluate and rank risk
- 5. Suggest mitigation measures

Experts

- Navigation
- Control engineering
- Sensor system engineering
- Naval architecture
- Risk engineering
- Industrial design
- Autonomy experts
- Electric propulsion

- The ferry
- Hazard analysis
- Results
- Challenges and the way forward

Main results – Hazards and mitigation

- Kayaks and swimmers
- Overlooked by other boats
- Blackout
- Sensor failures
- Control system failure
- Communication
- Hacking and spoofing
- NTNU

- Robust detection
- Clear marking
- Redundant and robust battery
- Functional redundancy
- Robust, tested and verified system
- Encrypted, robust, redundant
- Robust cyber security design

UNLOCK

- The ferry
- Hazard analysis
- Results
- Challenges and the way forward

Hazard/ Risk analysis methods

- Difficult to assess the interactions and deviations.
 - Possible methods: System-Theoretic Process Analysis or Functional Resonance Analysis Method
- Relative timing aspects not covered

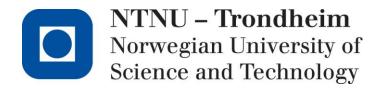
Quantitative Risk analysis

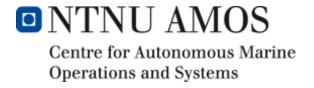
- Interactions that lead to failure
 - New methods necessary
 - Few data available
- Software failure
 - Data driven modeling not possible
- Assessment of traffic in the canal.
 - Influence of the ferry

Baseline and acceptable risk

- No quantitative risk level has been defined previously as baseline
- The existing rules are mainly prescriptive and do not set criteria
- Statistics by the emergency service may give an indication
 - Underreporting
- Public acceptance
 - The ferry should be significantly safer than traditional ships
- Continuous improvement

Regulations


- Several functions executed by seafarers
 - Demonstration that autonomous functions are similarly safe
 - Clear definition of performance criteria
- Certification and training requirements for the onshore operator
- Water-based firefighting
 - All electric
- Recent incidents with battery-driven ferries
 - Safety requirements



Further work

- Detailed design
- Detailed risk analysis
- Cooperation with Norwegian Maritime Authority
- Cooperation with other Stakeholders
- Share the experiences to facilitate future autonomous ships

Do you have any questions?

THANK YOU FOR YOUR ATTENTION!

The UNLOCK project: https://www.ntnu.edu/web/imt/unlock

References

- Eide, E. (2018). Kick-off meeting autoferry AVIT presentation.
- Rausand, M. (2011). <u>Risk Assessment Theory, Methods, and Applications</u>.
 Hoboken, New Jersey, USA, John Wiley & Sons.

