

Cooperative optimal coverage for seabed surveys with USVs

Stephanie Kemna, Henrik Lenes, Arild Hepsø

International Conference on Maritime Autonomous Surface Ships (ICMASS) 2019

Presenter: Stephanie Kemna -- stephanie@maritimerobotics.com

About Maritime Robotics

- Established in 2005
- Located in Trondheim, Asker and Eggemoen (Norway)
- Main markets: geophysical mapping, environmental monitoring and defence/security

UNMANNED SYSTEMS COST EFFICIENT AND RISK-REDUCING MARITIME DATA ACQUISITION

Unmanned Aerial System - The PX-31

Maritime Robotics - Unmanned Surface Vehicles

SHELTERED WATERS

OTTER

COASTAL/OPEN WATERS

MARINER

OPEN OCEAN

WAVE GLIDER LIQUID ROBOTICS

Otter USV - Specifications

Electrical thrusters Max speed: 6.0 kn (4.0 kn with sonar) Dimensions: 200 x 108 x 81.5 cm Endurance: 20+ hours at 2 kn with Norbit iWBMS

Optional: * AIS receiver

* Camera

* GSM modem

Splits into pieces < 15-20 kg

Use Case - Reservoir Mapping with Multibeam Sonar

Norbit iWBMS, Applanix AP20 and CPOS RTK

Use Case - Underwater Hyperspectral Imager Research on Algae Classification

Optimal coverage for seabed surveys

Lidar-based SLAM & complete coverage path planning

System: Otter USV + low cost lidar

RPLidar A3

Example data: indoor, small room

Complete coverage path planning (CCPP)

Boustrophedon-based CCPP

Bio-inspired neural network based CCPP

Autonomous online path planning and path-following control for complete coverage maneuvering of a USV

Jan Henrik Lenes

Supervisor: Roger Skjetne Co-advisor: Arild Hepsø (Maritime Robotics)

https://youtu.be/hqOUKtosnFw

Field results: Boustrophedon-based CCPP

Some challenges

➤ Lidar:

- Max detection range of lidar in the field: 14m (indoor: 25m)
- Only detections if surface hit at right angle
- No detections for black objects, e.g. ships with black hull
- Low jetty not detected due to 'high' mounting of lidar
- False detections due to sunshine
- State estimation and localization
 - Offsets in IMU data caused 'angled' detections in SLAM map
- > SLAM
 - Cartographer corrections only made when lidar detects obstacles

Multi-vehicle surveys for optimal coverage

Formation control for optimal survey coverage

Marine survey operations are cost and time intensive, and still mostly performed by a single, large vessel with high daily operating costs.

Formation control for optimal survey coverage

Marine survey operations are cost and time intensive, and still mostly performed by a single, large vessel with high daily operating costs.

➤ USVs could:

- follow a survey vessel in formation
- run as a group of USVs in formation
- Result: cost- and time-efficient surveys

Formation Control

Leader-follower formation control: <u>https://youtu.be/ir1_1nlmJtM</u>

Considering the actual sonar coverage

SafeCOP final demonstration: Otter USVs in formation behind Telemetron USV. The follower positions are calculated based on sonar coverage of leader USV. <u>https://youtu.be/oIBdRzhpJpU</u><u>http://www.safecop.eu</u>

~ * *

Thank you for your attention!

Questions?

Unmanned Surface Vehicle

MADT