SMALL MASS ASSISTING MANNED MERCHANT VESSELS: THE ANTI-GROUNDING USE CASE

Vincent E. Schneider, Fraunhofer CML 14.11.2019, MTEC/ICMASS 2019 – Autonomous Vessels - Navigation

Why anti-grounding?

Between 2011 and 2015, more than 1,426 grounding accidents in European waters [1]

Why anti-grounding?

51 groundings in the river Elbe [1],

Why anti-grounding?

51 groundings in the river Elbe [1], 40% thereof in port of Hamburg [2]

Agenda

- 1 Why anti-grounding and how to prevent it
- The anti-grounding use case
- 3 Virtual Full Scale Simulation

How to prevent it?

Problems

Shallow riverbeds and tidal bore restrict passage

Sea Charts only display normed water depth

Recurring sedimentation requires frequent bottom mapping

Sea chart

The drawback of LAT-based safety features in tidal waters

Current technologies

Hydrography maps

Low time resolution

Forward looking sonar

Shallow water depth

ASV

Better time resolution

The anti-grounding use case

how a real-time solution could look like

1. Ship on port appraoch

2. ASV creating map

3. Ship avoids shallow water

early stage testing of system integration

1. Simulate realistic port approach

function: free perspective

Smulation Centre

function: ENC- und 3D-modeling

OsMan-Standalone

function: modeling of own ship models

2. Integrate ASV into simulation

2. Integrate ASV into simulation

ANS

- AIS messages from SHS
- Harsh weather controller
- Collision avoidance
- Autopilot
- Can control multiple ships

3. Create realistic depth maps of port approach

4. Exercise with nautical officers

SONARSIM

5. Feedback and 6. Evaluation

RoboVaaS-anti grounding use case

the service design

RoboVaaS

the five use cases

KONTAKT

Fraunhofer-Center für Maritime Logistik und Dienstleistungen CML Am Schwarzenberg-Campus 4, Gebäude D 21073 Hamburg · Germany WWW.CML.FRAUNHOFER.DE

Vincent E. Schneider +49 (0) 40 42878-6036 vincent.schneider@cml.fraunhofer.de

References

[1] EMSA, Annual Overview of Marine Casualties and Incidents 2016, E.M.S. Agency, Editor. 2016

[2] 5. BürgerschaftHH, Schriftliche Kleine Anfrage des Abgeordneten Michael Kruse (FDP) vom 19.03.15 und Antwort des Senats, B.d.F.u.H. Hamburg, Editor. 2015

[3] Köster F, T. Thies, The evolution of the Port of Hamburg from a hydrographic perspective, Hydrographische Nachrichten, 100, pp. 48-52, 2015

[4] https://www.hafen-hamburg.de/en/news/container-vessel-runs-aground-on-the-river-elbe---34489

