Smart Maintenance in Cyber-Physical Systems

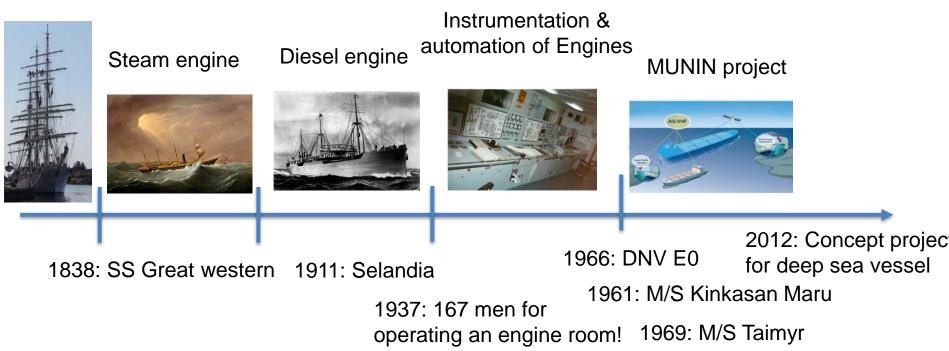
Harald Rødseth

Postdoctoral Fellow

Department of Mechanical and Industrial Engineering, NTNU

Aim and outline

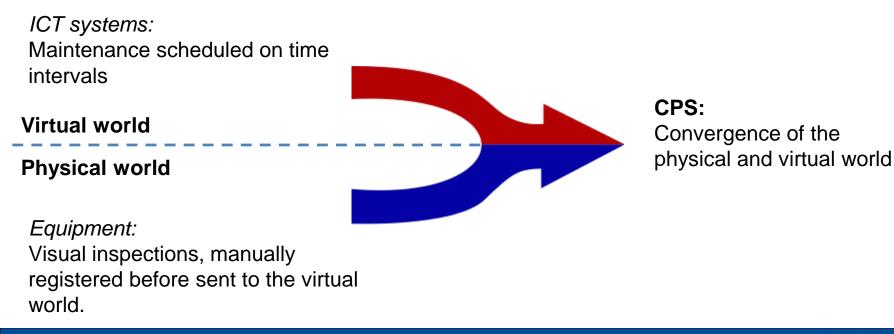
Aim of this presentation:


To present concepts that enable Smart Maintenance in Cyber-physical systems

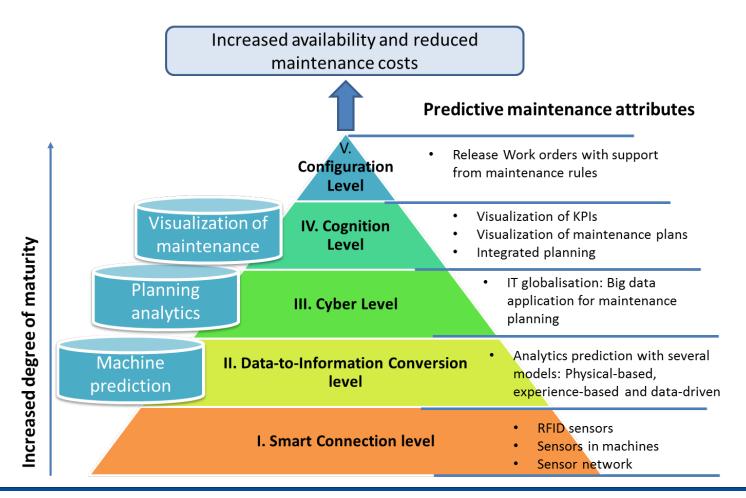
Outline:

- 1. Cyber-physical systems
- 2. Smart Maintenance
- 3. Application of Smart maintenance in cyber-physical systems
- 4. Summary & Conclusion

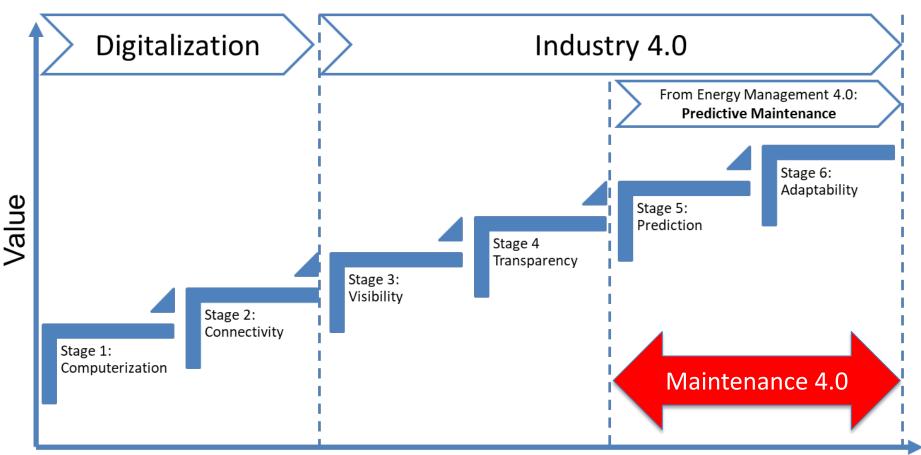
Age of sail



Products produced manually by	I. Industrial revolution Water & Steam	2. Industrial revolution Electricity & Mass produ	1 1 1 1 1 1 1 1 1 1 1 1 1 1	A Industrial revolution Cyber-Physical System & Industrial internet	
manually by craftmen	End of 18 th	Circuit a Cooth	Start of		,
	century	Start of 20 th century	1970s	Today	Time


Figure 1: Four stages of industrial revolutions Picture 1 collected from "1983 Industrial Robots KUKA IR160/60, 601/60"

 Definition of Cyber-Physical systems (CPS) (Lee, Bagheri, & Kao, 2015): *"Transformative technologies* for managing interconnected systems between its physical assets and computational capabilities."


Example of an architecture for CPS:

6 Figure 2: Architecture model for predictive maintenance (Source: Rødseth et. al., Euromaintenance 2016)

- German Standardization Report for Industry 4.0 (DIN, 2016): *"In Industry 4.0 in general, and specifically in the factory of the future – the smart factory – maintenance will play a central role* as the guarantor of the availability and reliability of machines and systems... Without systematic development of maintenance into smart maintenance, the successful implementation of Industry 4.0 will be put at risk."
- Research priorities from the EU project Focus (<u>www.focusonfof.eu</u>): Optimized & Predictive Maintenance.
- Maintenance in digitalized manufacturing (Bokrantz et. al., 2017): Fact based maintenance planning.

Continuous Improvement, Development and Innovation

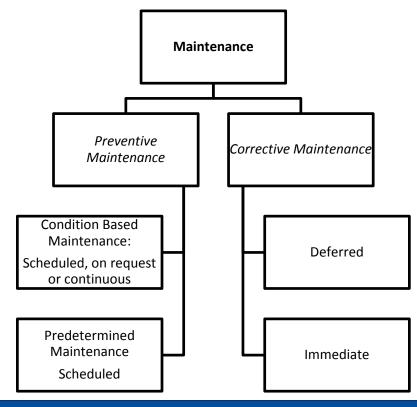
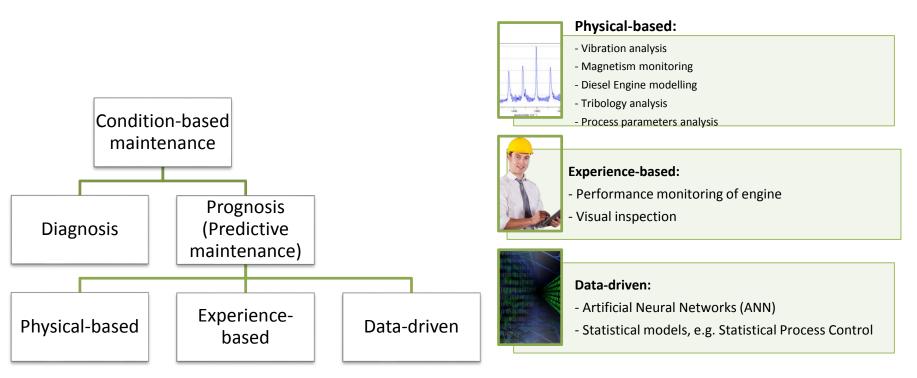
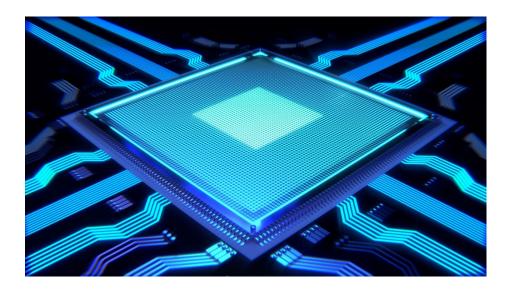
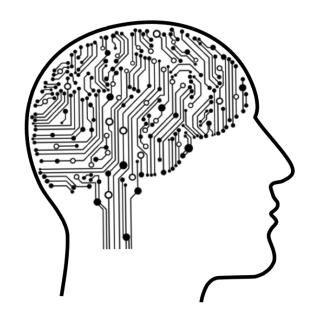

Figure 3: Industry 4.0 maturity model, adapted from (Nienke et.al., 2017) and (Schuh et. al., 2017)

Table 1: The main value drivers for Industrie 4.0 adapted from (McKinsey&Company, 2015).


	Value drivers				
	Service/aftersales	Asset utilization			
Activities and technology	 Remote maintenance Predictive maintenance 	 Remote monitoring and control Predictive maintenance Augmented reality for MRO 			
Indicative impact	10-40 % reduction of maintenance costs	30-50% reduction of total machine downtime			

• **Predictive maintenance** (En 13306, 2010): "Condition based maintenance carried out following a forecast derived from repeated analysis or known characteristics and evaluation of the significant parameters of the degradation of the item"

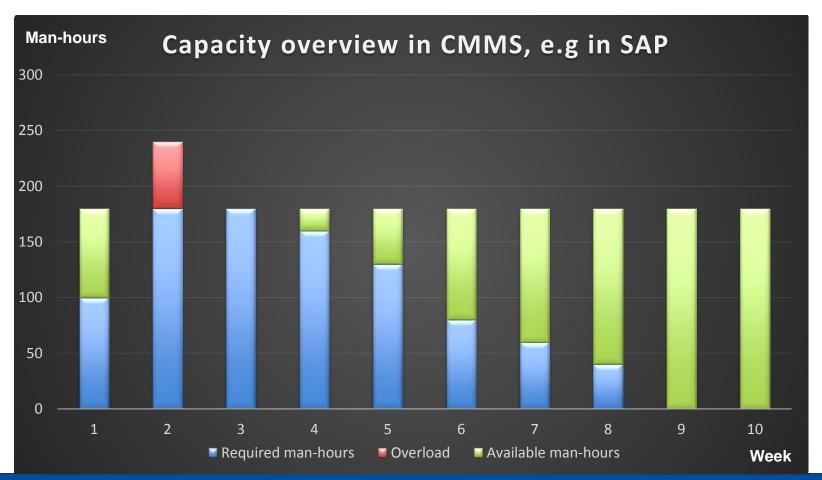




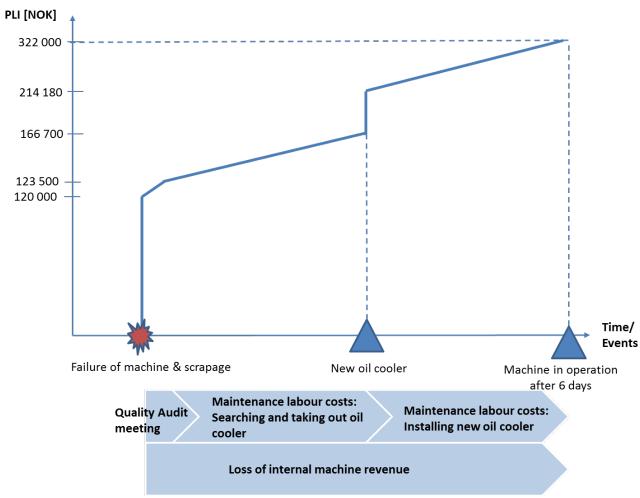
Source: Asmai, S.A. et. al (2010) 2nd International Conference on Computer Research and Development

- Machine learning teaches computers where several algorithms "learn" directly from data.
- Evolvement from Artificial Intelligence.
- Data is king with Moores Law.

In *computerized maintenance management system* (CMMS): Planned repair process, e.g. in SAP:


- 1. Notification: Technical object, date, description, priority
- 2. Planning: Work to be performed, material, tools, resource internal/external
- 3. Controlling: Order release, capacity leveling, paper printout, availability check
- 4. Implementation: Material withdrawal, external procurement
- 5. Completion: Time confirmation, technical completion & confirmation

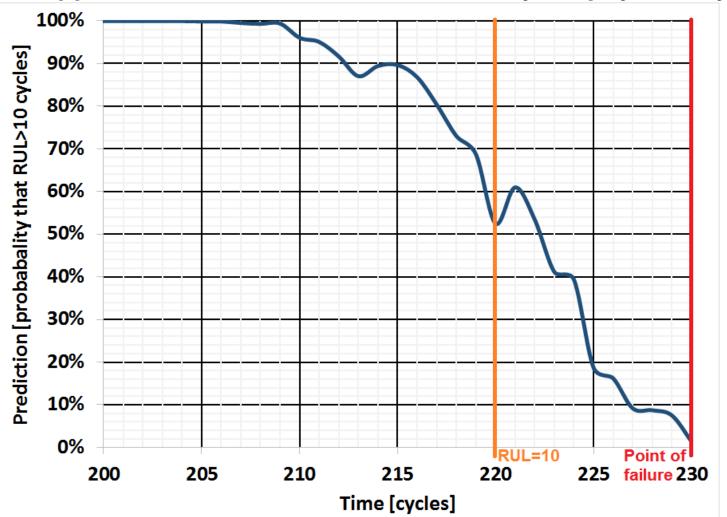
Record of history:


Material usage, orders, notifications, information system, usage list

What time window is needed in the maintenance system?

3. Application of Smart maintenance in cyber-physical systems

Figure 4: PLI calculations


Source: Rødseth, H. and P. Schjølberg (2016). "Data-driven Predictive Maintenance for Green Manufacturing." Advanced Manufacturing and Automation VI, Atlantis Press. **24:** 36-41.

3. Application of Smart maintenance in cyber-physical systems

cycle	setting 1	setting 2	setting 3	sensor 1	sensor 2	•••••	sensor 20	sensor 21
1	-0.0007	-0.0004	100	518.67	641.82		39.06	23.419
2	0.0019	-0.0003	100	518.67	642.15		39	23.4236
3	-0.0043	0.0003	100	518.67	642.35		38.95	23.3442
4	0.0007	0	100	518.67	642.35		38.88	23.3739
5	-0.0019	-0.0002	100	518.67	642.37		38.9	23.4044
6	-0.0043	-0.0001	100	518.67	642.1		38.98	23.3669
7	0.001	0.0001	100	518.67	642.48		39.1	23.3774
8	-0.0034	0.0003	100	518.67	642.56		38.97	23.3106
9	0.0008	0.0001	100	518.67	642.12		39.05	23.4066
10	-0.0033	0.0001	100	518.67	641.71		38.95	23.4694

Source:

Rødseth, H., P. Schjølberg and A. Marhaug (2017). "Deep digital maintenance." Advances in Manufacturing **5**(4): 299-310.

3. Application of Smart maintenance in cyber-physical systems

Source:

Rødseth, H., P. Schjølberg and A. Marhaug (2017). "Deep digital maintenance."

Advances in Manufacturing 5(4): 299-310.

4. Summary & conclusion

- Smart Maintenance applied in land based industry has been presented with a case of predictive maintenance.
- The benefit is to perform maintenance when actually needed.
- A challenge is to have sufficient relevant data for machine learning.
- To Transfer this Smart Maintenance into the maritime sector several issues must be reviewed:
 - The cost of 128 kbs bandwidth as satellite service (MUNIN vessel) for notifying a future maintenance action at deep sea. This service is a shared cost. Should this bandwidth be increased? How much data is actually necessary to transfer from vessel to shore?
 - Is the machinery equipped with sensors measuring sufficient data quality?
 - Big data analytics on device (at the vessel) or in cloud (at shore)?
 - To what extent has the maritime industry willing to share anonymous fleet data?
 - If Shipping 4.0 permits manning of vessel, which maintenance tasks can be performed during voyage?

The End

"Coming together is a beginning, staying together is progress, and working together is success." -Henry Ford-

Thank you for your attention!

Reference of open access publication

Rødseth, H., P. Schjølberg and A. Marhaug (2017). "Deep digital maintenance." Advances in Manufacturing 5(4): 299-310.

Available at: https://doi.org/10.1007/s40436-017-0202-9

