DYNAMIC 'STANDING ORDERS' FOR AUTONOMOUS NAVIGATION SYSTEM BY MEANS OF MACHINE LEARNING

Tina Scheidweiler, Fraunhofer Center for Maritime Logistics and Services 14.11.2019, MTEC / ICMASS 2019 – Autonomous Vessels - Navigation

Content

Introduction

Dynamic Standing Orders

Conclusion and Outlook

Image © Fotolia © Fraunhofer · Slide 2

Content

2

Dynamic Standing Orders

Conclusion and Outlook

Image © Fotolia © Fraunhofer · Slide 3

Development of Maritime Autonomous Surface Ships

Development of Maritime Autonomous Surface Ships

MASS Business

New Job Profile ,Data Scientist'

Task: Analysis of data using Big Data Analytics and generation of information that supports the employees responsible for e.g. management of transport and transshipment resources.

MASS Technology Development

MASS Starting in Protected Waters

Content

Dynamic Standing Orders

Image © Fotolia © Fraunhofer · Slide 8

Autonomous Navigation

Four Process Stages of Control

Parasuraman R, Sheridan, T B and Wickens C D 2000 A model for types and levels of human interaction with automation IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 30 286

© Fraunhofer · Slide 9

Autonomous Navigation

Four Process Stages of Control

Parasuraman R, Sheridan, T B and Wickens C D 2000 A model for types and levels of human interaction with automation IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 30 286

© Fraunhofer · Slide 10

Autonomous Navigation

PARAMETRISATION OF SYSTEMS

REQUIREMENTS

- Human intervention
- Perception of environmental influences
- Intelligent algorithms for determining relevant parameters have not been developed
- A system which provides the optimal operating parameters taking into account
 - ship-specific characteristics and
 - influencing factors for existing autopilots

is not available on the market

Machine Learning in Collision Avoidance

Dynamic Standing Orders for ANS

Standard Traffic Situation

Framework

Iterative k-Means

Form $n \in \mathbb{N}$ Cluster

Results

Scatterplot of DCPA and distances and visualisation of ship domains and action ranges for defining critical areas.

Scatterplot of DCPA and distance for a subsample after the first clustering.

Results

Scatterplot of DCPA and distance for a subsample after the second clustering.

Scatterplot of DCPA and distance for a subsample after the third clustering.

Results

After the third iteration, the amount of data is limited to critical situations whose action ranges and ship domains are specified by the following intervals

Action Range:

A = [1.32 NM, 5.25 NM]

Ship Domain:

S = [0.31 NM, 1.15 NM]

Content

Introduction

Dynamic Standing Orders

Conclusion and Outlook

Image © Fotolia © Fraunhofer · Slide 19

Conclusion and Outlook

From the first internal tests it can be concluded that standing orders can be dynamically adapted before the start of a working shift for a predefined sea area

- The inclusion of weather or sea chart data could further increase the accuracy of the algorithm and increase the safety of maritime traffic on the way to more automated navigation
- Certification of machine learning algorithms to be discussed
- Real-time capability of the algorithms must be further investigated

CONTACT

Tina Scheidweiler Head of Team "Nautical Solutions and Data Science" Fraunhofer Center for Maritime Logistics and Services CML Am Schwarzenberg-Campus 4 21073 Hamburg · Germany

+49 (0) 40 42878-6082 tina.scheidweiler@cml.fraunhofer.de

